Population genetic diversity and structure of two rare vernal pool grasses in central California


Vernal pool ecosystems are declining throughout California, with only 10% of historic habitat remaining. This has endangered many specialist endemic plant species, leaving extant populations fragmented, isolated, and threatened or endangered. Recovery plans for the increasing number of endangered vernal pool species require information on their genetic and ecological status to guide conservation and restoration efforts. Federally threatened Neostapfia colusana (Colusa grass) and federally endangered Tuctoria greenei (Greene’s tuctoria) are two endemic vernal pool grasses of high conservation concern in central California. Remaining populations are highly fragmented due to range-wide habitat destruction. Using five polymorphic microsatellite markers for each species, we performed genetic surveys of 240 individuals from eight vernal pools for N. colusana, and 317 individuals from 13 vernal pools for T. greenei. We detected high within-population genetic diversity for both species, with average allelic diversities of 24 alleles/locus (mean Hobs = 0.68, mean Hexp = 0.71) for N. colusana, and 19 alleles/locus (mean Hobs = 0.77, and mean Hexp = 0.79) for T. greenei. Bayesian clustering and AMOVA indicated two genetically distinct population groups for N. colusana (Fst = 0.268, P < 0.0001), and three for T. greenei (Fst = 0.11, P < 0.0001). We found very slight temporal genetic structure at one N. colusana (Fst = 0.013, P < 0.05) and two T. greenei (Fst = 0.015, Fst = 0.018, P < 0.05) pools. These estimates of population genetic diversity and structure are critical measures for both species that will help inform recovery management actions.


    4 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)