Autoantibodies to the HLA-B27 sequence cross-react with the hypothetical peptide from the arthritis-associated Shigella plasmid.


We previously reported elevated serum antibody levels to a peptide representing the HLA-B27 polymorphic region (B27 peptide) in HLA-B27(+) ankylosing spondylitis (AS) patients. A plasmid (pHS-2) isolated from arthritogenic Shigella flexneri strains had been shown to encode an amino acid sequence homologous to HLA-B27. Rabbit antibody to this sequence (pHS-2 peptide) strongly cross-reacted with B27 peptide and, to a much lesser extent, with Klebsiella nitrogenase peptide. Serum antibody levels to pHS-2 peptide were studied in 160 spondylarthropathy patients. 12 of 115 (10.4%) AS patients, 2 of 45 (4.4%) patients with Reiter's syndrome or reactive arthritis as well as 6 of 147 (4.1%) normal controls were shown to have elevated anti-pHS-2 peptide antibodies. Antibody levels to B27 and pHS-2 peptides were significantly correlated in 134 HLA-B27(+) patients (r = 0.333, P less than 0.001). 13 of 15 affinity-purified anti-B27 peptide antibodies from patients strongly cross-reacted with pHS-2 peptide, whereas only 3 weakly cross-reacted to nitrogenase peptide. Leucine appeared to be a critical residue for this cross-reaction. AS patients' anti-B27 peptide antibodies reacted with HLA-B27 transfected L cells. These results may suggest that pHS-2 peptide more efficiently "mimics" B27 peptide than does nitrogenase peptide. Involvement of pHS-2 in pathogenesis of spondylarthropathy through molecular mimicry mechanisms requires further study.


    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)